On the integrity of distance domination in graphs

نویسندگان

  • Timothy J. Bean
  • Michael A. Henning
  • Henda C. Swart
چکیده

Let nand k be positive integers and let G be a graph. A set D of vertices of G is defined to be an (n, k )-dominating set of G if every vertex of V( G) D is within distance n from at least k vertices of D. The minimum cardinality among all (n, k )-dominating sets of G is called the (n, k )-domination number of G and is denoted by 'Yn,k(G). A set I of vertices of G is defined to be an (n, k)independent set in G if every vertex of I is within distance n from at most k-1 other vertices of I in G. We denote by f3n,k( G) the maximum cardinality of an (n, k)-independent set of G. We show that the problem of computing 'Yn,k is in the NP-complete class, even when restricted to bipartite graphs and chordal graphs. We prove that in every graph there exist some subsets of vertices that are both (n, k )-independent and (n, k )-dominating, so In,k :s; f3n,k' We also investigate lower and upper bounds on 'Yn,k' Australasian Journal of Combinatorics .!Q.( 1994) I pp. 29-43

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-Efficient partitions of graphs

A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...

متن کامل

Complexity and approximation ratio of semitotal domination in graphs

A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

On exponential domination and graph operations

An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v  in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

Domination parameters of Cayley graphs of some groups

‎In this paper‎, ‎we investigate domination number‎, ‎$gamma$‎, ‎as well‎ ‎as signed domination number‎, ‎$gamma_{_S}$‎, ‎of all cubic Cayley‎ ‎graphs of cyclic and quaternion groups‎. ‎In addition‎, ‎we show that‎ ‎the domination and signed domination numbers of cubic graphs depend‎ on each other‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1994